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Maximize z = 2x1 + x2

s.t. − 3x1 + 2x2 ≤ 6
x1 + x2 ≤ 8

2x1 − x2 ≤ 4
x1, x2 ≥ 0
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LP Duality - the notion

Minimize 7x1 + x2 + 5x3

s.t. x1 − x2 + x3 ≥ 10
5x1 + 2x2 − x3 ≥ 6

x1, x2, x3 ≥ 0

How do you exhibit an upper bound to the OPT?

Consider the feasible solution X =< 2,1,3 >

objective value at X = 7*2 + 1*1 + 5*3 = 30

30 is an upper bound

Epitech Workshop on Algorithms February 15, 2016 13 / 43



LP Duality - the notion

Minimize 7x1 + x2 + 5x3

s.t. x1 − x2 + x3 ≥ 10
5x1 + 2x2 − x3 ≥ 6

x1, x2, x3 ≥ 0

How do you exhibit an upper bound to the OPT?

Consider the feasible solution X =< 2,1,3 >

objective value at X = 7*2 + 1*1 + 5*3 = 30

30 is an upper bound

Epitech Workshop on Algorithms February 15, 2016 13 / 43



LP Duality - the notion

Minimize 7x1 + x2 + 5x3

s.t. x1 − x2 + x3 ≥ 10
5x1 + 2x2 − x3 ≥ 6

x1, x2, x3 ≥ 0

How do you exhibit an upper bound to the OPT?

Consider the feasible solution X =< 2,1,3 >

objective value at X = 7*2 + 1*1 + 5*3 = 30

30 is an upper bound

Epitech Workshop on Algorithms February 15, 2016 13 / 43



LP Duality - the notion

Minimize 7x1 + x2 + 5x3

s.t. x1 − x2 + x3 ≥ 10
5x1 + 2x2 − x3 ≥ 6

x1, x2, x3 ≥ 0

How do you exhibit an upper bound to the OPT?

Consider the feasible solution X =< 2,1,3 >

objective value at X = 7*2 + 1*1 + 5*3 = 30

30 is an upper bound

Epitech Workshop on Algorithms February 15, 2016 13 / 43



LP Duality - the notion

Minimize 7x1 + x2 + 5x3

s.t. x1 − x2 + x3 ≥ 10
5x1 + 2x2 − x3 ≥ 6

x1, x2, x3 ≥ 0

How do you exhibit an upper bound to the OPT?

Consider the feasible solution X =< 2,1,3 >

objective value at X = 7*2 + 1*1 + 5*3 = 30

30 is an upper bound

Epitech Workshop on Algorithms February 15, 2016 13 / 43



LP Duality - the notion

Minimize 7x1 + x2 + 5x3
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x1, x2, x3 ≥ 0

How do you exhibit an upper bound to the OPT?

For a minimization problem:
objective value for any feasible solution

is an upper bound
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LP Duality - the notion

Minimize 7x1 + x2 + 5x3

s.t. x1 − x2 + x3 ≥ 10 y1

5x1 + 2x2 − x3 ≥ 6 y2

x1, x2, x3 ≥ 0

assign a non-negative coefficient yi to every constraint such that
7x1 + x2 + 5x3 ≥ y1(x1 − x2 + x3) + y2(5x1 + 2x2 − x3)

lower bound is 10y1 + 6y2

Epitech Workshop on Algorithms February 15, 2016 17 / 43



LP Duality - the notion

The problem of finding the best lower bound can be formulated as a
linear program

Primal

Minimize 7x1 + x2 + 5x3

s.t. x1 − x2 + x3 ≥ 10
5x1 + 2x2 − x3 ≥ 6

x1, x2, x3 ≥ 0

Dual

Maximize 10y1 + 6y2

s.t. y1 + 5y2 ≤ 7
−y1 + 2y2 ≤ 1

3y1 − y2 ≤ 5
y1, y2 ≥ 0
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LP Duality - the notion

Primal

Minimize
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≥ bi ∀i

xj ≥ 0 ∀j

Dual

Maximize
m∑

i=1

biyi

s.t.
m∑

i=1

aijyi ≤ cj ∀j

yi ≥ 0 ∀i

Minimize cT x
s.t. Ax ≥ b

x ≥ 0

Maximize bT y
s.t. AT y ≤ c

y ≥ 0
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LP Duality - the notion

Dual

Maximize bT y
s.t. AT y ≤ c

y ≥ 0

Dual of Dual

What is the dual of the dual ?
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LP Duality - the notion

Dual

Maximize bT y
s.t. AT y ≤ c

y ≥ 0

Dual of Dual

Minimize cT x
s.t. Ax ≥ b

x ≥ 0

What is the dual of the dual ? Primal
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LP Duality - Weak Duality Theorem

Weak Duality: If x =< x1, x2, ......, xn > and y =< y1, y2, ....., ym > are
feasible solutions for the primal and dual program, respectively, then:

∑n
j=1 cjxj ≥

∑m
i=1 biyi

Proof:
n∑

j=1

cjxj ≥
n∑

j=1

(
m∑

i=1

aijyi)xj

=
m∑

i=1

(
n∑

j=1

aijxj)yi

≥
m∑

i=1

biyi
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LP Duality- Strong Duality/ LP Duality Theorem

Strong Duality:

The primal program has finite optimum iff its dual has finite
optimum

if x∗ =< x∗1 , x
∗
2 , ......, x

∗
n > and y∗ =< y∗1 , y

∗
2 , ....., y

∗
m > are optimal

solutions for the primal and dual programs, respectively, then:∑n
j=1 cjx∗j =

∑m
i=1 biy∗i
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LP Duality- Complementary Slackness

Complementary Slackness Conditions: If x and y are respectively
feasible solutions for primal and dual, then,

x and y are optimal iff:

Primal: ∀ 1 ≤ j ≤ n : either xj = 0 or
∑m

i=1 aijyi = cj

Dual: ∀ 1 ≤ i ≤ m : either yi = 0 or
∑n

j=1 aijxj = bi
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LP Duality- Complementary Slackness

Proof: By Strong Duality Theorem:

n∑
j=1

cjxj =
n∑

j=1

(
m∑

i=1

aijyi)xj =
m∑

i=1

(
n∑

j=1

aijxj)yi =
m∑

i=1

biyi

Thus
∑n

j=1(cj −
∑m

i=1 aijyi)xj = 0

So either xj = 0 or cj −
∑m

i=1 aijyi = 0

Thus xj > 0 implies
∑m

i=1 aijyi = cj
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Approximation Algorithms

Vertex cover problem:

Given: Graph G = (V ,E)

To find: A subset S ⊂ V of minimum cardinality such that for every
edge (u, v) ∈ E , either u ∈ S or v ∈ S, or both

Integer Program
Minimize

∑
u:u∈V

xu

s.t. xu + xv ≥ 1 ∀ (u, v) ∈ E
xu ∈ {0,1} ∀ u ∈ V
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Approximation Algorithms: LP Rounding

An LP rounding based approximation algorithm for vertex cover:

1 Solve the relaxed Linear Program corresponding to the given
problem:

Minimize
∑

u:u∈V

xu

s.t. xu + xv ≥ 1 ∀ (u, v) ∈ E
0 ≤ xu ≤ 1 ∀ u ∈ V

2 S = {u ∈ V : xu ≥ 1
2}
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Approximation Algorithms: LP Rounding

Claim 1: S is a feasible solution

Consider an edge (u, v)

xu + xv ≥ 1

max{xu, xv} ≥ 1
2

hence at least one of u and v is picked in S
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Approximation Algorithms: LP Rounding

Claim 2: |S| ≤ 2 ·OPT

|S| ≤
∑
u∈S

2 · xu (since xu ≥
1
2
∀ u ∈ S)

= 2
∑
u∈S

xu

≤ 2 ·OPT
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Approximation Algorithms: LP Rounding

Theorem: The LP-rounding algorithm is a 2-approximation algorithm
for the vertex cover problem

Proof:

Claim 1 and Claim 2 imply the theorem

Epitech Workshop on Algorithms February 15, 2016 34 / 43
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Approximation Algorithms: Primal-Dual for VC

Primal LP:

Minimize
∑

u:u∈V

xu

s.t. xu + xv ≥ 1 ∀ e = (u, v) ∈ E
0 ≤ xu ≤ 1 ∀ u ∈ V

Dual LP:

Maximize
∑

e:e∈E

ye

s.t.
∑

e:e∼u

ye ≤ 1 ∀ u ∈ V

0 ≤ ye ≤ 1 ∀ e ∈ E
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Approximation Algorithms: Primal-Dual for VC

Complementary Slackness Conditions:

1 Primal: either xu = 0 or
∑

e:e∼u ye = 1 ∀u ∈ V

2 Dual: either ye = 0 or xu + xv = 1 ∀e = (u, v) ∈ E
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Approximation Algorithms: Primal-Dual for VC

Primal-Dual Schema applied to the Vertex Cover problem:

1 Let x and y denote solutions to Primal and Dual respectively.
Start with x = 0 and y = 0.
solution to Primal VC x = 0; solution to Dual VC y = 0
observe that y is dual feasible but x is not primal feasible

2 Until the Primal is feasible:
raise the dual variables (either simultaneously or one-by-one) while
maintaining the dual feasibility
raise ye ∀e ∈ E until some dual constraint goes tight

for every tight dual constraint, freeze the value of y and raise the
corresponding x
∀u s.t.

∑
e:e∼u ye = 1, set xu = 1; delete all edges incident on u

Epitech Workshop on Algorithms February 15, 2016 38 / 43
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Approximation Algorithms: Primal-Dual for VC

Claim 1: At the end of algorithm, x is primal feasible and y is dual
feasible

we ensure feasibility of y at every step; so y is feasible at the end

the algorithm terminates only when x is feasible
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Approximation Algorithms: Primal-Dual for VC

Claim 2: x and y satisfy Primal Complementary Slackness

recall PCS: either xu = 0 or
∑

e:e∼u ye = 1 ∀u ∈ V

we raise xu (set xu = 1) only when the corresponding dual
constraint is tight
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Approximation Algorithms: Primal-Dual for VC

Claim 3: x and y 2-approximate Dual Complementary Slackness

recall DCS: either ye = 0 or xu + xv = 1 ∀e = (u, v) ∈ E

xu = 0 or xu = 1 ∀u ∈ V

so xu + xv ≤ 2 ∀e = (u, v) ∈ E
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Approximation Algorithms: Primal-Dual for VC

Claim 4: If x and y are feasible for Primal and Dual, satify PCS and
α-approximate DCS, then:

costprimal(x) ≤ α · costdual(y)

costprimal(x) =
∑

i

xi =
∑

i

(
∑

j

aijyj)xi

=
∑

j

(
∑

i

aijxi)yj

≤
∑

j

αyj

= α
∑

j

yj = αcostdual(y)
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Approximation Algorithms: Primal-Dual for VC

Theorem: The primal-dual algorithm is a 2-approximation algorithm for
the vertex cover problem

Proof:

Claim 3: x and y 2-approximate Dual Complementary Slackness

Claim 4: If x and y are feasible for Primal and Dual, satify PCS and
α-approximate DCS, then:

costprimal(x) ≤ α · costdual(y)

Claim 3 and Claim 4 imply the theorem.
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