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0 Linear Programs
@ Understanding an LP
@ The notion of LP Duality (ref: Approximation Algorithms by Vijay
V. Vazirani)
@ Weak Duality Theorem
@ Strong Duality or LP Duality Theorem
@ Complementary Slackness

9 Approximation Algorithms via LP/ LP Duality
@ LP Rounding

e Approximation Algorithms via LP/ LP Duality
@ Primal-Dual
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0 Linear Programs

@ The notion of LP Duality (ref: Approximation Algorithms by Vijay
V. Vazirani)
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LP Duality - the notion

Minimize 7xq + X> + 5x3

st. Xg—Xxo+x3 > 10
5X1+2X —x3 > 6
X1, X2, X3 > 0
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LP Duality - the notion

Minimize 7xq + X> + 5x3
s.t. X1 — Xo + X3
5Xx1 42X — X3

(AVARAVARLV,
D

X1, X2, X3

How do you exhibit an upper bound to the OPT? )

Consider the feasible solution X =< 2,1,3 >

objective value at X =72 + 1*1 + 5*3 =30

30 is an upper bound
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LP Duality - the notion

Minimize 7Xx1 + Xo + 5x3
s.t. X1 — Xo + X3
5x1 +2x0 — X3

AVARAVARY
D

X1, X2, X3

How do you exhibit an upper bound to the OPT? )

For a minimization problem:
objective value for any feasible solution
is an upper bound
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LP Duality - the notion

Minimize 7Xq + X2 + 5X3

st. Xy—Xo+Xx3 > 10
5X14+2Xx —x3 > 6
X1,X,X3 > 0
What about a lower bound to the OPT? )

7X1 + Xo +5X3 > X1 — Xo +x3 Why?
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LP Duality - the notion

Minimize 7Xq + X2 + 5X3

st. Xy—Xo+x3 > 10
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X1, X2, X3 > 0
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LP Duality - the notion

Minimize 7Xq + X2 + 5X3

st. Xy—Xo+x3 > 10
5X1 +2Xo —X3 > 6
X1 ) X27 X3 2 0
What about a lower bound to the OPT? )

X1 +Xo+5X3 > X4 —Xo+Xx3 > 10

A better lower bound
X1 + X2 + 5Xx3 > (X1 —X2—|—X3)—|—(5X1 + 2Xo —X3) > 10+6=16

Epitech Workshop on Algorithms February 15, 2016 16/43



LP Duality - the notion

Minimize  7Xq + X3 + 5X3

st. Xy—Xo+X3 > 10 yy
S5X1+2X2 —X3 > 6 o
X1, X2, X3 > 0

@ assign a non-negative coefficient y; to every constraint such that
X1+ X2 +5x3 > y1(x1 — X2 + x3) + y2(5x1 + 2x2 — X3)

@ lower bound is 10y + 6y»
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LP Duality - the notion

The problem of finding the best lower bound can be formulated as a
linear program J

Primal Dual
Minimize 7xy + Xo + 5x3 Maximize 10y; + 6y»
st. xy—x2+x3 > 10 st. y1+5p < 7
5 +2x—x3 > 6 —yi+2p < 1
Xy, X0, X3 > 0 3y1—y. < 5
Yi,yee 2 0
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LP Duality - the notion

Primal Dual .
n
Minimize > cx Maximize > by
= i—1
n m
st. Y apx > b Vi st. Y ay < ¢ Vv
j=1 i=1
x> 0 yi = 0 Vi
Minimize c'x Maximize bTy
st. Ax > b st. Aly < ¢
x >0 y =20

Epitech Workshop on Algorithms February 15, 2016 19/43



LP Duality - the notion

Dual Dual of Dual
Maximize by
st. ATy < ¢
y >0
What is the dual of the dual ? J
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LP Duality - the notion

Dual Dual of Dual
Maximize by Minimize c'x
st. Aly < ¢ st. Ax > b
y = 0 x >0
What is the dual of the dual ? Primal J
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0 Linear Programs

@ Weak Duality Theorem
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LP Duality - Weak Duality Theorem

Weak Duality: /fx =< x4, Xo, ...... JXn>andy =< yi, Yo, ....., Ym > are
feasible solutions for the primal and dual program, respectively, then:

e Gx = 20 biyi
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LP Duality - Weak Duality Theorem

Weak Duality: /fx =< x4, Xo, ...... JXn>andy =< yi, Yo, ....., Ym > are
feasible solutions for the primal and dual program, respectively, then:

e Gx = 20 biyi

Proof:

n n m
doox = > D awiy
j=1 j=1 =1

m

= Z(
i1 j=
m

> biy;

i=1

n
aijX;)yi
1

v
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0 Linear Programs

@ Strong Duality or LP Duality Theorem
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LP Duality- Strong Duality/ LP Duality Theorem

Strong Duality:

@ The primal program has finite optimum iff its dual has finite
optimum

@ X" =< X[, X3, ...... JXp > andyt =< yi, Y5, ......¥m > are optimal
solutions for the primal and dual programs, respectively, then:

> GxF =0 by}
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0 Linear Programs

@ Complementary Slackness
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LP Duality- Complementary Slackness

Complementary Slackness Conditions: /fx andy are respectively
feasible solutions for primal and dual, then,

x andy are optimal iff:

@ Primal: V1 <j < n: eitherx;=0or> ", ajy; = ¢

@ Dual: V1 < i< m:eithery; =0 or 3/ ajx; = bj
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LP Duality- Complementary Slackness

Proof: By Strong Duality Theorem:

n n m m n m
dox =Y O a)x=>_O_ax)yi=> by
= =1 =t i1 = i—

Thus 37 (¢ — >4 ajyi)x; =0

So either x; =0 or¢; — 7, @y =0

Thus x; > 0 implies Y"1 a;yi = ¢
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9 Approximation Algorithms via LP/ LP Duality
@ LP Rounding
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Approximation Algorithms

Vertex cover problem:
Given: Graph G = (V,E)

To find: A subset S C V of minimum cardinality such that for every
edge (u, V) € E, eitheru e Sorv € S, or both
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Approximation Algorithms

Vertex cover problem:

Given: Graph G = (V,E)

To find: A subset S C V of minimum cardinality such that for every
edge (u, V) € E, eitheru e Sorv € S, or both

Integer Program
Minimize Z Xu
uueV
st. xuy+x,>1 V (u,v)eE

x, €{0,1} V ueV
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Approximation Algorithms: LP Rounding

An LP rounding based approximation algorithm for vertex cover:

@ Solve the relaxed Linear Program corresponding to the given
problem:
Minimize > xy
u:ueV
st. xy+xx>1 V (u,v)eE

0<x, <1 V ueV

Q@ S={ueV:x,>1}
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Approximation Algorithms: LP Rounding

Claim 1: S is a feasible solution
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Approximation Algorithms: LP Rounding

Claim 1: S is a feasible solution

@ Consider an edge (u, v)

@ X, +xy>1
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Approximation Algorithms: LP Rounding

Claim 1: S is a feasible solution

@ Consider an edge (u, v)
@ X, +xy>1

o max{xy,x,} > 3%
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Approximation Algorithms: LP Rounding

Claim 1: S is a feasible solution
@ Consider an edge (u, v)
@ Xxy+xy, > 1
o max{xy,x,} > 3%

@ hence at least one of v and v is picked in S
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Approximation Algorithms: LP Rounding

Claim 2: |S| <2 OPT
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Approximation Algorithms: LP Rounding

Claim 2: |S| <2 OPT

’
S| < > 2-x, (since Xy> 5 VueS)

N
N
o
T
-
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Approximation Algorithms: LP Rounding

Theorem: The LP-rounding algorithm is a 2-approximation algorithm
for the vertex cover problem

Proof:

Claim 1 and Claim 2 imply the theorem
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e Approximation Algorithms via LP/ LP Duality
@ Primal-Dual
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Approximation Algorithms: Primal-Dual for
Primal LP:
Minimize > xy
uueV
st. xy+x,>1 V e=(uv)eE
0<x, <1 V ueV
Dual LP:
Maximize > ye
e.ecE
s.t. Zye§1 Y ueV

e.e~u

0<ye<1 V e€E

Epitech Workshop on Algorithms
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Approximation Algorithms: Primal-Dual for VC

Complementary Slackness Conditions:

@ Primal: eitherx, =0 or Y ..., Ye=1 YueV

© Dual: eitheryo=0 or x,+x,=1 Ve=(u,v)e E
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Approximation Algorithms: Primal-Dual for VC

Primal-Dual Schema applied to the Vertex Cover problem:
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@ Let x and y denote solutions to Primal and Dual respectively.
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Approximation Algorithms: Primal-Dual for VC

Primal-Dual Schema applied to the Vertex Cover problem:

@ Let x and y denote solutions to Primal and Dual respectively.
Startwithx=0andy = 0.
solution to Primal VC x = 0; solution to Dual VCy =0
observe that y is dual feasible but x is not primal feasible

@ Until the Primal is feasible:
o raise the dual variables (either simultaneously or one-by-one) while
maintaining the dual feasibility
raise y, Ve € E until some dual constraint goes tight

o for every tight dual constraint, freeze the value of y and raise the
corresponding x
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Approximation Algorithms: Primal-Dual for VC

Primal-Dual Schema applied to the Vertex Cover problem:

@ Let x and y denote solutions to Primal and Dual respectively.
Startwithx=0andy = 0.
solution to Primal VC x = 0; solution to Dual VCy =0
observe that y is dual feasible but x is not primal feasible

@ Until the Primal is feasible:
o raise the dual variables (either simultaneously or one-by-one) while
maintaining the dual feasibility
raise y, Ve € E until some dual constraint goes tight

o for every tight dual constraint, freeze the value of y and raise the

corresponding x
Vust > ..., Ye=1,setx, =1; delete all edges incident on u
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Approximation Algorithms: Primal-Dual for VC

Claim 1: At the end of algorithm, x is primal feasible and y is dual
feasible
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Approximation Algorithms: Primal-Dual for VC

Claim 1: At the end of algorithm, x is primal feasible and y is dual
feasible

@ we ensure feasibility of y at every step; so y is feasible at the end

@ the algorithm terminates only when x is feasible
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Approximation Algorithms: Primal-Dual for VC

Claim 2: x and y satisfy Primal Complementary Slackness

recall PCS: eitherx, =0 or > ..., Ye=1 YueV
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Approximation Algorithms: Primal-Dual for VC

Claim 2: x and y satisfy Primal Complementary Slackness

recall PCS: eitherx, =0 or > ..., Ye=1 YueV

@ we raise x, (set x, = 1) only when the corresponding dual
constraint is tight
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Approximation Algorithms: Primal-Dual for VC

Claim 3: x and y 2-approximate Dual Complementary Slackness

recall DCS: eithery, =0 or x,+x,=1 Ve=(u,v)c€ E
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Approximation Algorithms: Primal-Dual for VC

Claim 3: x and y 2-approximate Dual Complementary Slackness

recall DCS: either ye=0 or x,+x,=1 Ve=(u,v)eE
@ xy=0o0rx,=1vYueV

@ sox,+x,<2Ve=(u,v)eE
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Approximation Algorithms: Primal-Dual for VC

Claim 4: If x and y are feasible for Primal and Dual, satify PCS and
a-approximate DCS, then:

COStyrimal(X) < - COStyya(y)
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Approximation Algorithms: Primal-Dual for VC

Claim 4: If x and y are feasible for Primal and Dual, satify PCS and
a-approximate DCS, then:

COStyrimal(X) < - COStyya(y)

COStyrimat(X) = > _ X = > (O apy)x;
i J

i

= > O _apx)y
Ji i
< Z ayj
j
= a) Y= acostyal(y)
j

Epitech Workshop on Algorithms February 15, 2016 42 /43



Approximation Algorithms: Primal-Dual for VC

Theorem: The primal-dual algorithm is a 2-approximation algorithm for
the vertex cover problem
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Approximation Algorithms: Primal-Dual for VC

Theorem: The primal-dual algorithm is a 2-approximation algorithm for
the vertex cover problem

Proof:

Claim 3: x and y 2-approximate Dual Complementary Slackness
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Approximation Algorithms: Primal-Dual for VC

Theorem: The primal-dual algorithm is a 2-approximation algorithm for
the vertex cover problem

Proof:
Claim 3: x and y 2-approximate Dual Complementary Slackness

Claim 4: If x and y are feasible for Primal and Dual, satify PCS and
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Approximation Algorithms: Primal-Dual for VC

Theorem: The primal-dual algorithm is a 2-approximation algorithm for
the vertex cover problem

Proof:
Claim 3: x and y 2-approximate Dual Complementary Slackness

Claim 4: If x and y are feasible for Primal and Dual, satify PCS and
a-approximate DCS, then:

COStyrimal(X) < - COStgyal(y)

Claim 3 and Claim 4 imply the theorem.
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